NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

M.Tech. (Integrated)

Roll No:

SEM: IV- THEORY EXAMINATION (2024-2025)

SUBJECT: DATA STRUCTURES AND ALGORITHMS-II

Time: 3Hours Max. Marks:100

General Instructions:

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.

D. Kruskal's Algorithm

- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

	SECTION – A	20
1. Attempt all parts:-		
1-a.	Which of the following is true about binary search trees (BSTs)? (CO1, K1)	1
	A. All nodes have at most two children	
	B. Left subtree has keys less than the node	
	C. Right subtree has keys greater than the node	
	D. All of the above	
1-b.	Which data structure is most appropriate for implementing an expression tree? (CO1, K1) A. Queue B. Stack C. Binary tree D. Heap	1
1-c.	Which algorithm is used to find the shortest path in a weighted graph with non-	1
	negative weights? (CO2, K2)	
	A. DFS	
	B. BFS	
	C. Dijkstra's Algorithm	

Subject Code: BMICSE0401

1-d.	Which of the following problems is best solved using dynamic programming?	1
	(CO2, K2)	
	A. Binary search	
	B. Factorial computation	
	C. 0/1 Knapsack Problem	
	D. Depth-first traversa	
1-e.	What is the main principle of dynamic programming? (CO3, K1)	1
	A. Divide and conquer	
	B. Greedy choice	
	C. Recursion	
	D. Optimal substructure and overlapping subproblems	
1-f.	Which of the following problems can be solved using backtracking? (CO4, K1)	1
	A. N-Queens problem	
	B. Sudoku solver	
	C. Hamiltonian circuit	
	D. All of the above	
1-g.	Backtracking is a refinement of: (CO4, K2)	1
	A. Greedy method	
	B. Dynamic programming	
	C. Brute-force approach	
	D. Divide and conquer	
1-h.	What is the time complexity of the search operation in a red-black tree? (C5, K1)	1
	A. O(1)	
	B. O(log n)	
	C. O(n)	
	D. $O(n \log n)$	
1-i.	In a red-black tree, which of the following properties is FALSE? (C5, K1)	1
	A. Every node is either red or black	
	B. The root is always black	
	C. Red node can have red child	
	D. All paths from a node to descendant leaves contain the same number of black	
	nodes	
1-j.	B+ tree is preferred over B-tree in databases because: (CO1, K2)	1
	A. B+ tree is easier to implement	
	B. It allows binary search	

Subject Code: BMICSE0401

- C. Leaves are linked, supporting efficient range queries
- D. B+ tree has fewer nodes

2. Attempt all parts:-

- 2.a. What is a binary search tree (BST)? State its properties. (CO1, K1)
- 2.b. Define a spanning tree of a graph. (CO2, K1)
- 2.c. What do you understand by memorization in dynamic programming? (CO3, K2)
- 2.d. Explain the role of recursion in backtracking. (CO4, K2)
- 2.e. How does a red-black tree ensure balance? (CO5, K2)

SECTION – B 30

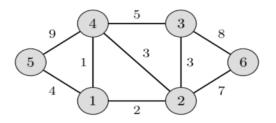
3. Answer any five of the following-

- 3-a. Explain the process of illustrating a binary search tree (BST) with a given sequence of numbers. What is the time complexity for search operations in the best, worst, and average cases? [2,8,3,9,6] (CO1, K3)
- 3-b. Differentiate between adjacency list and adjacency matrix representations of graphs. 6 Which is better and why? Support your answer with memory and time complexity analysis. (CO2, K4)
- 3-c. Explain Dijkstra's algorithm with a suitable example for finding the shortest path in a graph with non-negative edge weights. (CO2, K4)
- 3-d. Discuss the 0/1 Knapsack Problem using dynamic programming. (CO3, K2)
- 3-e. What is backtracking? How is it applied to the Hamiltonian cycle problem? (CO4, 6 K3)
- 3-f. Define a red-black tree and list its properties. Discuss the height of a red-black tree 6 with *n* internal nodes? (CO5, K2)
- 3-g. What is Min Heap? Apply the heap sort algorithm for following sequence of data 6 [4,7,1,9,5,8,3,9] (CO1, K3)

SECTION – C 50

10

4. Answer any one of the following-


4-a. Briefly explain In-order, Pre-order and Post-order binary tree traversal operation. A Binary tree T has 9 nodes. Illustrate the tree T with following sequences of nodes in in-order and pre-order traversals: (CO1, K3)

In-order: E A C K F H D B G
Pre-order: F A E K C D H G B

4-b. Illustrate an AVL Tree using the following keys inserted in order:
10, 20, 30, 40, 50, 25

Show all intermediate rotations and draw the final AVL Tree. (CO1, K3)

- 5. Answer any one of the following-
- 5-a. Use Kruskal's algorithm to find minimum cost spanning tree for the graph given in figure 1. 10 Analyze the complexity of Kruskal's algorithm. (CO2, K4)

- 5-b. Describe the working of the Floyd-Warshall algorithm for all-pairs shortest path. Explain how it handles negative weights and analyze its time complexity. (CO2, K4)
- 6. Answer any one of the following-
- 6-a. What is matrix chain multiplication? Explain how dynamic programming helps in finding the most efficient multiplication order. Analyze the recursive formula and show with an example. (CO3, K4)
- 6-b. Calculate the value of 0/1 Knapsack Problem using dynamic programming: 10 Items: {Weight = [2, 3, 4, 5], Value = [3, 4, 5, 6]} (CO3, K4) Capacity of Knapsack = 5
 - (i) Fill the DP table
 - (ii) Find the maximum value that can be obtained
 - (iii)Show item selection process
- 7. Answer any one of the following-
- 7-a. State the Traveling Sales Person (TSP) problem. Analyze the complexity of 10 backtracking approach to solve the TSP. (CO4. K4).
- 7-b. Differentiate between Algorithms for Breadth First Search (BFS) and Depth First Search (DFS)..Also write the BFS for graph given in Figure 2 staring with vertex "0". (CO4. K4).

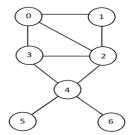


Figure 2.

- 8. Answer any one of the following-
- 8-a. Describe red-black trees in terms of structure, height, rotation frequency, and use cases. Discuss the applications of RB Tree.(CO5, K2)
- 8-b. Convert the following sequence of keys into a **B+ Tree of order 3 (max 2 keys per 10 node)**:10, 20, 5, 6, 12, 30, 7, 17 (CO5, K2)
 - (i) Show all intermediate steps and splitting Final tree with internal and leaf node structure